Targeting Phage Therapy is a groundbreaking approach in the field of medical science, revolutionizing the treatment of bacterial infections. Unlike traditional antibiotics, which often come with limitations such as resistance development and harmful side effects, phage therapy employs bacteriophages, or simply phages, to selectively target and eliminate harmful bacteria while preserving beneficial microflora. The concept behind phage therapy is not new; it dates back to the early 20th century when bacteriophages were discovered. However, recent advancements in biotechnology and our understanding of microbiology have revitalized interest in this therapeutic approach.
Phages are viruses that specifically infect and replicate within bacterial cells, ultimately causing their destruction. They are highly specific to particular strains of bacteria, making them an ideal candidate for targeted therapy. This specificity is key in avoiding collateral damage to the body's natural microbiota, which is often disrupted by broad-spectrum antibiotics. Moreover, phages can evolve alongside bacteria, making it difficult for bacteria to develop resistance against them—a major advantage over conventional antibiotics.
One of the most significant challenges in targeting phage therapy is identifying the right phages for a specific bacterial infection. This requires thorough characterization of both the infecting bacteria and potential phages, including their genetic makeup and interactions. Advances in genomic sequencing and bioinformatics have greatly facilitated this process, enabling researchers to quickly identify and isolate suitable phages from environmental sources or specialized phage banks.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Nutrient and heavy metal loads from the Ribeiras to Coastal zones: A land-ocean continuum perspective in Madeira Island
Aracelis Del Carmen Narayan Rajnauth, University of Porto, Portugal
Title : Prospective polyoxometalate-based covalent organic framework heterogeneous catalysts
Arash Ebrahimi, Comenius University Bratislava, Slovakia, Slovenia
Title : De novo molecular design and bioactivity prediction of novel hexahydroquinolines as transmission-blocking PfCDPK4 inhibitors
Gbolahan O Oduselu, University of Ghana, Ghana
Title : Expanding and improve the 2D periodic law of Менделееь elements, and construct the 3D periodic law of elements
Zhongsheng Lee, Zhengzhou Commercial Technician College, China
Title : Advances in plasma-based radioactive waste treatment
Hossam A Gabbar, Ontario Tech University, Canada