Molecular interactions, reaction dynamics, and thermodynamic principles define the foundation of chemical transformations and material behavior. Quantum mechanics and spectroscopy unravel atomic structures, enabling precise control over chemical reactions and material properties. Advances in computational simulations refine predictions of molecular behavior, accelerating discoveries in catalysis, nanotechnology, and energy storage. Surface chemistry innovations enhance sensor technologies, coatings, and heterogeneous catalysis, impacting industries from pharmaceuticals to renewable energy. Electrochemical studies drive progress in fuel cells and battery technologies, optimizing efficiency and sustainability. As interdisciplinary approaches expand, physical chemistry continues to bridge theoretical models with practical applications, shaping advancements in materials science, environmental chemistry, and energy solutions for a rapidly evolving technological landscape.
Title : Advances in plasma-based waste treatment for sustainable communities
Hossam A Gabbar, Ontario Tech University, Canada
Title : Nanostructured biodevices based on carbon nanotubes and glyconanoparticles for bioelectrocatalytic applications
Serge Cosnier, Silesian University of Technology, Poland
Title : Carbon capture and storage: The impact of impurities in CO2 streams
Andy Brown, Progressive Energy Ltd, United Kingdom
Title : Supramolecular nano chemistries: Fighting viruses, inhibiting bacteria and growing tissues
Thomas J Webster, Hebei University of Technology, China
Title : Chemical engineering of vanadium and tantalum zeolites for application in environmental catalysis
Stanislaw Dzwigaj, Sorbonne Universite, France
Title : Disrupting TNF-α and TNFR1 interaction: Computational insights into the potential of D-Pinitol as an anti-inflammatory therapeutic
Ferran Acuna Pares, Universidad Internacional de la Rioja (UNIR), Spain