Molecular interactions, reaction dynamics, and thermodynamic principles define the foundation of chemical transformations and material behavior. Quantum mechanics and spectroscopy unravel atomic structures, enabling precise control over chemical reactions and material properties. Advances in computational simulations refine predictions of molecular behavior, accelerating discoveries in catalysis, nanotechnology, and energy storage. Surface chemistry innovations enhance sensor technologies, coatings, and heterogeneous catalysis, impacting industries from pharmaceuticals to renewable energy. Electrochemical studies drive progress in fuel cells and battery technologies, optimizing efficiency and sustainability. As interdisciplinary approaches expand, physical chemistry continues to bridge theoretical models with practical applications, shaping advancements in materials science, environmental chemistry, and energy solutions for a rapidly evolving technological landscape.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Synthesis, ADMET, PASS, molecular docking, and dynamics simulation investigation of novel octanoyl glucoopyranosides & valeroyl ribofuranoside esters.
Hasinul Babu, University of Chittagong, Bangladesh
Title : Prospective polyoxometalate-based covalent organic framework heterogeneous catalysts
Arash Ebrahimi, Comenius University in Bratislava, Slovenia
Title : Utilizing Generative AI for Interactive Borane Modeling: Insights from Wade's Rule in Undergraduate Education
Mai Yan Yuen, The University of Hong Kong, Hong Kong
Title : Molecularly imprinted polymer-bimetallic nanoparticle based electrochemical sensor for dual detection of phenol iosmers micopollutants in water
Melkamu Biyana Regasa, Wollega University, Ethiopia