Molecular interactions, reaction dynamics, and thermodynamic principles define the foundation of chemical transformations and material behavior. Quantum mechanics and spectroscopy unravel atomic structures, enabling precise control over chemical reactions and material properties. Advances in computational simulations refine predictions of molecular behavior, accelerating discoveries in catalysis, nanotechnology, and energy storage. Surface chemistry innovations enhance sensor technologies, coatings, and heterogeneous catalysis, impacting industries from pharmaceuticals to renewable energy. Electrochemical studies drive progress in fuel cells and battery technologies, optimizing efficiency and sustainability. As interdisciplinary approaches expand, physical chemistry continues to bridge theoretical models with practical applications, shaping advancements in materials science, environmental chemistry, and energy solutions for a rapidly evolving technological landscape.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Nutrient and heavy metal loads from the Ribeiras to Coastal zones: A land-ocean continuum perspective in Madeira Island
Aracelis Del Carmen Narayan Rajnauth, University of Porto, Portugal
Title : Synthesis, ADMET, PASS, molecular docking, and dynamics simulation investigation of novel octanoyl glucoopyranosides & valeroyl ribofuranoside esters.
Hasinul Babu, University of Chittagong, Bangladesh
Title : Advances in plasma-based radioactive waste treatment
Hossam A Gabbar, Ontario Tech University, Canada
Title : Molecularly imprinted polymer-bimetallic nanoparticle based electrochemical sensor for dual detection of phenol iosmers micopollutants in water
Melkamu Biyana Regasa, Wollega University, Ethiopia
Title : Applying an external bias in XPS as a means to obtain additional information about materials
Alexander Pereyaslavtsev , SUE VNIIA, Russian Federation