Molecular interactions, reaction dynamics, and thermodynamic principles define the foundation of chemical transformations and material behavior. Quantum mechanics and spectroscopy unravel atomic structures, enabling precise control over chemical reactions and material properties. Advances in computational simulations refine predictions of molecular behavior, accelerating discoveries in catalysis, nanotechnology, and energy storage. Surface chemistry innovations enhance sensor technologies, coatings, and heterogeneous catalysis, impacting industries from pharmaceuticals to renewable energy. Electrochemical studies drive progress in fuel cells and battery technologies, optimizing efficiency and sustainability. As interdisciplinary approaches expand, physical chemistry continues to bridge theoretical models with practical applications, shaping advancements in materials science, environmental chemistry, and energy solutions for a rapidly evolving technological landscape.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Synthesis, ADMET, PASS, molecular docking, and dynamics simulation investigation of novel octanoyl glucoopyranosides & valeroyl ribofuranoside esters.
Hasinul Babu, University of Chittagong, Bangladesh
Title : Expanding and improve the 2D periodic law of Менделееь elements, and construct the "3D periodic law of elements"
Zhongsheng Lee, Zhengzhou Commercial Technician College, China
Title : Advances in plasma-based radioactive waste treatment
Hossam A Gabbar, Ontario Tech University, Canada
Title : Nature meets innovation: Green synthesis of nanoparticles using plant extracts and ionic liquids for a sustainable future
Azeez A Barzinjy, Soran University, Iraq