Mathematical models and simulations are transforming our understanding of chemical systems, enabling precise predictions of molecular behavior and reaction mechanisms. Quantum chemistry, molecular dynamics, and density functional theory provide insights into electronic structures, catalysis, and material properties at the atomic level. High-performance computing accelerates drug discovery, materials design, and energy storage innovations by optimizing reaction pathways and predicting novel compounds. Machine learning and artificial intelligence enhance computational efficiency, allowing for the rapid screening of molecular libraries. Simulated spectra and thermodynamic models aid experimental validation, reducing the need for costly trial-and-error methods. As technology advances, theoretical & computational chemistry continues to shape diverse fields, from nanotechnology and biophysics to green chemistry and space exploration, bridging theoretical principles with real-world applications.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Synthesis, ADMET, PASS, molecular docking, and dynamics simulation investigation of novel octanoyl glucoopyranosides & valeroyl ribofuranoside esters.
Hasinul Babu, University of Chittagong, Bangladesh
Title : Expanding and improve the 2D periodic law of Менделееь elements, and construct the "3D periodic law of elements"
Zhongsheng Lee, Zhengzhou Commercial Technician College, China
Title : Advances in plasma-based radioactive waste treatment
Hossam A Gabbar, Ontario Tech University, Canada
Title : Nature meets innovation: Green synthesis of nanoparticles using plant extracts and ionic liquids for a sustainable future
Azeez A Barzinjy, Soran University, Iraq