Non-covalent interactions, including hydrogen bonding, van der Waals forces, and π-π stacking, drive the self-assembly of complex molecular architectures with tailored properties. Advances in host-guest chemistry enable the design of molecular machines, drug delivery systems, and responsive materials. Supramolecular polymers and dynamic covalent networks exhibit adaptive behavior, finding applications in nanotechnology, soft materials, and biomedicine. Molecular recognition plays a crucial role in catalysis, sensing, and the development of synthetic receptors for targeted binding. The integration of supramolecular principles with nanotechnology enhances smart materials and stimuli-responsive systems. As research expands, supramolecular chemistry continues to shape the development of innovative materials, biomimetic systems, and functional nanostructures, paving the way for next-generation applications in medicine, energy, and environmental science.
Title : Eliminating implant failure in humans with nano chemistry: 30,000 cases and counting
Thomas J Webster, Brown University, United States
Title : Synthesis of chitosan composite of metal organic framework for the adsorption of dyes, kinetic and thermodynamic approach
Tooba Saeed, University of Peshawar, Pakistan
Title : Synthesis, ADMET, PASS, molecular docking, and dynamics simulation investigation of novel octanoyl glucoopyranosides & valeroyl ribofuranoside esters.
Hasinul Babu, University of Chittagong, Bangladesh
Title : Prospective polyoxometalate-based covalent organic framework heterogeneous catalysts
Arash Ebrahimi, Comenius University in Bratislava, Slovenia
Title : Utilizing Generative AI for Interactive Borane Modeling: Insights from Wade's Rule in Undergraduate Education
Mai Yan Yuen, The University of Hong Kong, Hong Kong
Title : Molecularly imprinted polymer-bimetallic nanoparticle based electrochemical sensor for dual detection of phenol iosmers micopollutants in water
Melkamu Biyana Regasa, Wollega University, Ethiopia