Engineering biological systems at the molecular level has opened new frontiers in medicine, agriculture, and sustainable manufacturing. The design of synthetic pathways enables the production of bio-based chemicals, pharmaceuticals, and high-value biomaterials with enhanced efficiency. Advances in genetic circuit construction and CRISPR-based genome editing allow precise control over metabolic networks, leading to the creation of tailor-made biomolecules. In drug discovery, synthetic peptides and nucleic acid-based therapeutics provide innovative treatment strategies for complex diseases. The development of artificial enzymes and biomimetic catalysts expands possibilities in green chemistry and industrial bioprocessing. By merging principles of chemistry, biology, and engineering, synthetic biology & designer molecules continues to revolutionize biotechnology, offering solutions for personalized medicine, environmental sustainability, and next-generation biomaterials.
Title : Rational design of battery cathode materials
Kyeongjae Cho, University of Texas at Dallas, United States
Title : Pharmaceutical chemistry studies of novel biologics and drugs for chronic obstructive pulmonary disease
Yong Xiao Wang, Albany Medical College, United States
Title : Theoretical modeling in organic nanophotonics: Processes and devices
Alexander Bagaturyants, Retired, Israel
Title : Hot atom chemistry - Past, present and future
Shree Niwas Chaturvedi, Centre for Aptitude Analysis and Talent Search, India
Title : Chemical engineering of vanadium, titanium or chromium zeolites for application in environmental catalysis
Stanislaw Dzwigaj, Sorbonne Université, France
Title : Distal functionalization via transition metal catalysis
Haibo Ge, Texas Tech University, United States